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ABSTRACT 

When coherent audio streams are summed, delays can cause comb filtering and polarity inversion can result in 

cancellation. The GCC-PHAT algorithm is a popular method for detecting (and hence correcting) the delay. This 

paper explores the performance of the Generalized Cross Correlation with Phase Transform (GCC-PHAT) for delay 

and polarity correction, under a variety of different conditions and parameter settings, and offers various 

optimizations for those conditions. In particular, we investigated the performance for moving sources, background 

noise, and reverberation. We consider the effect of varying the size of the Fourier Transform when performing 

GCC-PHAT. In addition to accuracy, computational efficiency and latency were also used as metrics of 

performance. 

 

1. INTRODUCTION 

Using multiple microphones to record one source has 

become common practice in the digital age. Mixing of 

these multiple signals however leads to comb filtering. 

Comb filtering is caused by small delays between two 

correlated signals which are summed. When this is 

viewed in the frequency domain it has a comb-like 

appearance, as shown in Figure 1. It is both constructive 

and as it boosts and cuts specific frequencies. 

Comb filtering is generally unwanted and exists 

between any microphones at different distances from 

the same source. The problem also occurs in parallel 

systems such as when a guitar with a Direct Interface is 

mixed with a microphone on the guitar amplifier. 

Another situation is when processing a signal and 

mixing the processed and unprocessed signals in real 

time such as when using reverb. Both of these situations 

result in a delay difference and therefore comb filtering 

when the two signals are summed. 
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Figure 1 Comb Filtering at 100 samples and 44.1kHz 

sample rate 

When recording a signal s with two microphones, the 

resultant signals can be expressed as: 

  [ ]     [    ] 

  [ ]     [    ]    (1 ) 

Where x1 and x2 are the microphone signals, 1 and 2 

are the delays and c1 and c2 represent amplitude 

changes. This does not account for other artifacts such 

as reverberation and noise. (1) can be rewritten to show 

the summed signal x in terms of s: 

 [ ]     [    ]     [    ]   (2 ) 

and x2 can be written in terms of x1, 

  [ ]     [   ] .   (3 ) 

In (3), c can represent the amplitude change between the 

two signals due to both attenuation and polarity 

inversion. The delay difference between the two signals 

is  , and can be detected through the use of the 

Generalized Cross Correlation and Phase Transform 

(GCC-PHAT) algorithm [1]. In [2], an alternative 

technique was given that also corrected for  polarity 

inversion. However, this approach is known to be less 

robust than GCC-PHAT. 

Previous testing of the GCC-PHAT algorithm was 

focused on the effects of applying a window to smooth 

the incoming audio blocks before the GCC-PHAT 

algorithm was applied, as well as exploring the 

performance of band limited signals [3]. [4] showed 

how the correct weighting on a signal could improve the 

GCC performance, but these were only in reverberant 

environments and the weightings did not provide highly 

significant improvements over using the GCC-PHAT. 

In [5], it was stated that delay estimation algorithms 

tend to have reduced performance when used within 

reverberant environments or where there are poor signal 

to noise ratios. However it did not provide results 

rigorous assessment of the performance under those 

conditions. [6] used a variant of GCC-PHAT, based on 

the Multichannel Cross-Correlation Coefficient. 

However it was designed to locate the position, as did 

[5], rather than report the delay between the two signals. 

It appeared to perform well in a free-field environment, 

but the behavior in a reverberant room is unknown. 

 [7] also based their work on localizing sound and more 

specifically the angle of incidence. Their paper showed 

that noise had a significant effect on the accuracy of the 

detection, however it did not report the delay values. 

Their method adapted the GCC-PHAT algorithm as 

well by using a low-pass filter before windowing the 

signals. 

In this paper, we aim to show the performance of the 

GCC-PHAT by altering the size of the processing 

blocks. The block size is the length of samples 

processed by the GCC-PHAT. The algorithm was tested 

for its ability to detect the delay in both real world 

simulations and worst case scenarios to find its 

limitations 

This paper shows how the GCC-PHAT can be used for 

polarity correction as well as delay correction. We show 

that GCC-PHAT can be tailored to specific performance 

requirements through simply choosing the correct block 

size. Therefore the best performance can be achieved 

whilst allowing for high accuracy with minimal 

processing. 

This paper also provides a detailed analysis of the 

distortions and artifacts signals can have and their 

effects on the accuracy of the GCC-PHAT. 

2. GCC-PHAT & POLARITY 

2.1. GCC-PHAT 

The GCC-PHAT algorithm used in this paper is a chain 

of signal processing and mathematics to estimate a 

delay value between two coherent signals. Firstly the 

signals are converted into the frequency domain using 

the Fast Fourier Transform. Next they are combined 

through a Generalized Cross Correlation. The result is 

normalized using the Phase Transform and converted 
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into a histogram using an Inverse Fast Fourier 

Transform. 

The GCC is defined as 

][][][ 2

*

1 kXkXkG    (4 ) 

in the frequency domain where Xn is xn in the frequency 

domain and k is the frequency bin from 0 to N-1. (4) can 

be converted into the time domain through an inverse 

FFT so that 

]}[{][ 1 kGFnG      (5 ) 

where F
-1

 is the inverse FFT function. This can then be 

used to find the delay   in (3). [8] showed that the 

performance increased by including a Phase Transform 

(PHAT) before applying the IFFT on the GCC. The 

PHAT on the GCC can be expressed as 

][

][
][

kG

kG
kP




    (6 ) 

It weights the GCC results so all frequencies are 

normalized to one, therefore preserving the phase but 

ignoring the effects of magnitude. The IFFT is applied 

on this to provide the histogram. The histogram can be 

read such that: 

][maxarg nP
n
     (7) 

which should equal   from (3). 

[8] showed that applying an N-Point Hann window on 

the block of samples before applying an FFT increased 

the accuracy further. 

The complete GCC-PHAT algorithm can operate on 

discrete blocks of a specified length, allowing the delay 

to be calculated numerous times over the signals 

duration. 

2.2. Polarity Correction 

Sources may be out of phase with each other due to 

incorrect cabling or signal processing. The algorithm 

does not consider this, and therefore it is entirely 

possible for the signals to be aligned and cancel each 

other out due to inverse phase. 

The histogram produced by the GCC-PHAT can be used 

to detect if the signals are in the correct polarity with 

each other. This is achieved by reading the histogram 

and determining if the maximum point, also used for the 

delay amount, is either positive or negative. If it is 

positive then both signals are in-phase. If it is negative 

then one must be inverted before summing. 

3. METHODS AND EXPECTED RESULTS 

The tests are generally performed in the same fashion. A 

stimulus is used and has a certain process applied to 

alter it. The processed and unprocessed signals are then 

sent through the algorithm and the results are used to 

determine if it reported the delay correctly. 

For the tests block sizes were used in powers of 2 

ranging from 2
5
 to 2

17
.To provide consistency, 5 stimuli 

tracks of duration 1 minute at 44.1kHz sample rate were 

used. The tracks were a kick drum, piano, snare, violin 

and a mix. The kick drum features a heavily transient 

signal but only occupying the lower ends of the 

frequency spectrum. The signal also had large audio 

gaps between hits. The piano featured large amounts of 

sustain, although overall was of high energy. The snare 

was similar to the kick but had greater bandwidth and 

some spill of the drum set between hits. The violin was 

a high frequency instrument. Finally the mix provided a 

large bandwidth, consistent amplitude signal. All the 

stimuli were normalized between +1 and -1 of the 

floating point range before any processing or testing. 

3.1. Margin of Error 

The effects of comb filtering are shown in Figure 1 with 

a delay of 100 samples. This will cause an audible 

difference in quality. 

A value was deemed correct if it was within 2 samples 

of the absolute correct value. This allows for small 

errors where the effects of comb filtering only affect the 

high frequencies as shown in Figure 2. 
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Figure 2 Comb filtering at 2 samples difference 

3.2. Methodology 

Test 1 aimed at assessing the accuracy of the algorithm 

with varying delay. It was performed by taking the 

stimulus and delaying it a number of samples. This 

allowed for a highly accurate signal. The delays used 

ranged from 0 to 1,000 samples (0.02s delay at 

44.1kHz) in steps of 10 and then up to 100,000 (2.27 

delay at 44.1kHz) in steps of 1,000. This gave a large 

range whilst not requiring an unnecessary amount of 

processing. The smaller delays were used to test the 

smaller block sizes. After 1,000 samples of delay the 

tests would affect the larger block sizes only. 

 

The second test was testing the accuracy with noise and 

was performed by taking the input and applying noise as 

a percentage of the floating point range. [8] also 

performed tests on the effects of noise with GCC-

PHAT, but operated using the multiple peak algorithm 

introduced in that paper. The signal amplitude was 

lowered by the same amount to ensure that there was no 

clipping of the output signal, as shown in 

 

])[()1(][][ nWGNaanxny   (8 ) 

 

where a is the noise multiplier, n is the sample number 

and WGN is the noise array. The noise used was white 

Gaussian noise with amplitude range of -1 to +1 of 

floating point values. This value a ranged from 0 (no 

added noise) up to 0.99 (99% added noise) in steps of 

0.01.  In order to provide more detail, the steps up to 0.1 

were in 0.001. 

 

The third test combined both of the above tests into one 

system to investigate the effects noise had on a delayed 

signal. [8] stated that adding noise to a signal would 

impact the maximum detectable distance. This test 

aimed to show this relationship. The delay values were 

set depending on the block size and were whole sample 

numbers.  Each delay was applied with 0 to 0.05 

amplitude noise in steps of 0.001. This gave a matrix 

output for easy interpretation of the results. 

 

The moving source test interpolated the signal to 

simulate a motion difference. This was achieved by 

starting at a delay of 0 and moving through to a 

determined end delay difference at a linear rate. The end 

delay difference was a range of 10 (1.30mm/s) to 100 

(12.96mm/s) in steps of 10, then up to 1,000 (0.13m/s) 

in steps of 100 and finally up to 10,000 (1.3m/s) in steps 

of 1,000. 

 

[9] and [10] both performed tests looking into 

reverberation and how reverberant spaces affect the 

performance of GCC-PHAT. For this test the image 

source toolbox by [11] was used to simulate a room 

with a fixed source and a single receiver. The room was 

a 3m by 3m by 2m virtual room with the source at 1.5m 

x 0.1m x 1m and the receiver at 1.5m by ym by 1m. The 

y is distance from source which varied from 0.1m to 

2.7m in steps of 0.2m. The T60 reverberation time (the 

time taken for the amplitude of the reverb to drop by 

60dB) was varied from 0s to 2s in steps of 0.1s. 

 

The algorithm was also run on a timer to determine the 

CPU time taken for each particular segment of code. For 

this the code was run on an Intel i7-720QM with the 

clock limited to 930MHz.  

3.3. Expected Results 

The general expected result was that the larger the block 

size, the higher the accuracy. The maximum delay for 

each block size was expected to be half of the block 

size. This is because the block size is processed by the 

FFT, which returns N/2 samples of information. 

 

It was also expected that each stimulus would produce 

varying results as each stimulus was chosen for its 

individual qualities. However the results would be 

related to each other. 

4. RESULTS 

All of the results are with the error margins of +/- 2 

samples from the absolutely correct value. When small 

block sizes are mentioned this indicates sizes under 

2048 and large block sizes above 2048. 
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4.1. Delay 

The delay test was mostly what was expected. Figure 3 

shows each block size could detect up to half of its 

block size, after which the accuracy became near to 0%. 

The reason it was not 0% is because the results become 

noise so some values would fall in the correct range. 

 

Each block size also produced errors before the N/2 

limit. This was most noticeable in the smaller block 

sizes. The 1024 sample size was 100% accurate up until 

the 500 sample delay for the kick and snare but errors 

for the others occurred earlier (440 – Mix, 390 – Piano, 

260 – Violin). All of these values are between 25% and 

50% of the length of the N/2. 

 

The 128 block size was only accurate up until the 40 

delay sample for the kick and snare and around 20 for 

the others. Therefore its errors start between 

approximately 16% and 31%, far earlier than the 1024 

value. The 32 sample value only gets the 0 delay right 

and had over 50% of error values for all 5 stimuli at 10 

samples of delay (~33%). 

 

Figure 3 proves that the maximum detectable delay 

value of the block size is N/2. However the larger the 

block size, the more accurate it remains before this 

point. 

 

 

Figure 3 Accuracy of small block sizes 

 

This is also true for the larger block sizes, although their 

error counts were lower. For instance the 2048 window 

gave only 7% of errors at 1000 sample delay (48.8%). 

The other blocks exhibit similar patterns of error to this. 

 

Therefore as the block size decreases, the proportion of 

reliably detectable values for each size falls. 

 

The polarity accuracy followed these curves although 

they generated more errors. This is most likely because 

the polarity is only two values and therefore cannot 

have an error margin. 

4.2. Noise 

This test showed that the block size has an effect on the 

resilience to noise as highlighted in Figure 4. As the 

block size increases the number of incorrect results 

decreases when averaged over the five stimuli. The 

block size of 32 reaches 39.6% error at noise amplitude 

0.1 whilst the 1024 only generated 22.4% error and the 

131072 generates 0% error.  

 

The 32 size block size achieves 30% of errors at a noise 

amplitude of 0.034 (29.07 dBSNR) whilst the 256 block 

size gets 30% of errors at a noise amplitude of 0.045 

(26.54 dBSNR).The larger blocks show more resilience to 

noise with 32768 getting 30% of error at 0.91 noise (-

20.01 dBSNR). All the signals fail at 0.94 of noise. These 

values were the mean of all 5 stimuli. 

 

Figure 4 Accuracy of small block sizes when tested 

against varying noise levels 

As shown in Figure 4, the smaller sized blocks start to 

have errors at lower noise levels. It also shows that 

when noise amplitude is under 0.2, the smaller block 

sizes all tend to behave similarly. This is mostly due to 

the high error rate introduced early on by the Kick drum 

across all the small block sizes, illustrated in Figure 5. 

Block sizes 256 and above have greater resilience at 

lower noises. At very high levels of noise (above 0.8 

noise amplitude) the relationship is roughly inverted 

whereby the smaller block sizes have greater accuracy 

than the large block sizes, although the number of errors 
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is still high. This may be attributed to the fact that 

incorrect delay estimates have a greater chance of being 

within 2 samples of the actual delay for smaller block 

sizes. 

 

Resistance to noise is strongly related to the stimuli. The 

kick drum for all the block sizes completely fails by 

45% of noise (1.74 dBSNR) whilst the violin can be 

accurate up to 83% (-13.77 dBSNR). Both of these values 

are with the higher block sizes (65536 and 131072 

respectively). 

 

Figure 5 Individual Stimulus results of the 1024 

averaging line in Figure 4 

The kick was far worse at lower noise levels because of 

the gaps between the hits. The block sizes below 32768 

would sometimes consist purely of these gaps, meaning 

the relative signal to noise ratio for that block was 

lower. This was amplified by the energy of the Kick 

being primarily in the lower end of the spectrum, 

meaning the GCC-PHAT would have a handful of 

points where there was useful information. The snare 

was more resistant because it contained drum spill 

between the hits, allowing for calculations to still be 

accurate. The Mix performs best because it contains a 

large amount of information across both time and 

frequency domains. 

 

One can conclude that the higher block sizes can 

maintain high accuracy over a wide range of noise. The 

results also indicate that the smaller block sizes perform 

better under high noise, but this is not definitive. 

4.3. Noise and Delay 

As the noise affected the accuracy of the algorithm 

along with the delay, the combination of the two should 

provide an interesting relationship. The noise was tested 

up to 0.05 and the delay was spread evenly from 0 to N, 

N being the block size. 

The large block size of 131072 and 65536 had near 

100% accuracy for all stimuli at any delay and noise 

value whilst 32768 never got above 29.4% of errors 

(0.05 noise, 15744 delay). The error rates were all 

below 30% for blocks larger than 8192. 

 

Figure 6 Intensity plot of the effect of noise on accuracy 

of delay estimation where 1 is 100% accuracy 

Figure 6 shows the effect that noise has on the accuracy 

of delayed signals. As the delay increases the resistance 

to noise decreases. This applies for all except the largest 

3 block sizes. As the block size drops, the algorithm 

becomes less and less noise resistant, as proven earlier. 

But also as the block size drops the accuracy at the same 

delay fails. 

 

Figure 7 Comparison of block sizes with a delay of 410 

samples and increasing noise levels 

Figure 7 show how the performance is affected by 

different block sizes with the same delay. The 4096 and 

8192 performed identically. The larger the block size 

the more noise resistance for any delay value. 
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This follows the trend from section 4.2 that larger block 

sizes perform better with noise and can have a greater 

range of detection as shown in section 4.1. 

4.4. Moving Source 

The moving source test provided some unexpected 

results. The results initially point to an optimum level of 

block size being 4096 for 44.1kHz sample rate, as 

depicted in Figure 8. This graph shows a relationship 

between two variables that apply throughout the results. 

The first is the rule of N/2 being the maximum 

detectable delay. This is the reason for the line for the 

small block sizes. Their lines of error are on or near to 

the N/2 limit. 

 

The other rule is that there is an inherent latency in the 

algorithms ability to update, which is equal to the block 

size. This means that for larger block sizes it cannot 

update fast enough to be accurate. This produces the top 

half of the line. These two lines converge on the 4096 as 

the best compromise between these two rules. 

 

Figure 8 shows the area of detectability, where a certain 

speed and size gives consistent results, but does not 

show if a block size was able to track at a certain speed. 

It was discovered that the smaller block sizes were able 

to track the high speeds accurately as long as the delay 

was within its usable range as indicated in the first test. 

  

Taking the block size 32, it is clear that even for the 

small delay of 10 samples difference after 1 minute the 

algorithm already has high failure rates. But if the delay 

remains within its usable space (roughly below 6 

samples) then it can with high accuracy track the 

moving source and update the delay correctly. This was 

still true for the 10,000 samples per minute (1.3m/s) 

audio stream. Figure 9 converts these speeds into human 

readable speeds of 1.30mm/s (10 samples) and 1.3m/s 

(10,000). The plot shows that the accuracy for both is 

high whilst under the 6 sample usable space. 

 

Therefore, the lower the block size the quicker the 

response and the higher speed it can track. The lower 

the block size however lowers the maximum difference 

of distance from source to microphone. Thus the smaller 

block sizes can be used so long as the difference in 

distance does not exceed its usable range. 

 

 

Figure 8 Percentage of Error for moving source signals 

 

 

Figure 9 Block size of 32 samples with a moving source 

of 10 samples per minute 

4.5. Reverb 

The reverberation test highlighted an interesting result. 

The algorithm seems perfectly able to detect delay in 

our environment provided the distance is under 1.1m 

and the block size is above  4096. 

Figure 10 shows that for a T60 time of 0.1 the block sizes 

less than 1024 do not perform well at any distance. The 

larger block sizes all gain high accuracy but fail at 

distances above 2.3m. The 2048 block size however 

performs well for all tested distances. 

This theme of results continues throughout the various 

T60 times. As shown in Figure 10, as the T60 time 

increases the maximum usable distance decreases 
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Figure 10 Accuracy with reverberation at 

various T60 times 

This relationship continues all the way through to the 

higher T60 times of one second where the accuracy at all 

block sizes drops significantly. 

 

Figure 11 Accuracy with reverberation at 

distance from source of 1 meter 

Whilst figure 10 clearly shows that there is a peak 

performance at 1024 to 2048 samples, figure 11 

indicates that the accuracy drops off for higher T60 

values. But the best accuracy achieved was with the 

block sizes above 8192 for distances less than 1.1m. 

This shows for our virtual environment that the smaller 

block sizes are not able to determine the correct delay 

value. However the larger block sizes are not entirely 

accurate. The block sizes of 1024 and 2048 appear most 

suited to detect the correct delay, although all block 

sizes increase their accuracy with a decrease in distance. 

4.6. Computation Time 

An important aspect of any processing technique is the 

time required to process the signals. The results in 

sections 4.1 to 4.5 were performed using MATLAB. 

The time tests in this section were performed using a 

VST implementation of the GCC-PHAT algorithm 

developed in order to test its ability of operation in a 

real world and potentially live situation. 

 

The GCC (equation 4) was faster by comparison to the 

other tested processes in Figure 12. The time to process 

1 minute of audio varied little with the block size. 

However the intensive operation was the PHAT 

calculation which was far higher than any other process 

at over 1.1s of CPU time per minute of audio. The 

PHAT process can be seen in equation 6. 

 

 

Figure 12 Time per sample of major GCC-

PHAT processes in a VST plugin 

On average a PHAT process would take approximately 

4x10
-7

s of CPU time per sample. This starts out being 

very small amounts of time for the lower block sizes but 

on the 131072 size it becomes 0.057s to process each 

block of information. 

 

The FFT and IFFT processes (equation 5) were very 

quick due to the PFFFT library and were nearly 

identical to each other. Figure 11 shows the 

unexpectedly low time for the FFT and IFFT processes 

and the growing size of the PHAT for small block sizes. 

The cause for this growth is unknown as it should be 

expected to be linear or at worst increasing with block 

size. The Window also has a slightly increased time for 

the small block sizes, which might be explained due to 

some initializing time for each block. It can also be an 

error due to the resolution of the total time being to 

0.001s. 

 

The window function was surprisingly computationally 

intensive given the implementation of the window. 
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Once the window is generated in the initialization it 

does not need to be recomputed for each block and was 

implemented through simple multiplication: 

 

 [ ]   [ ]   [ ]    (9 ) 

 

where y is the output, x is the input and W is the window 

array. Each block sample is multiplied by a value 

obtained from the window array. 

The overall speed of the C++/VST implementation is 

lower than expected. It points to increased accuracy at 

higher block sizes but the reasons for this are not 

entirely clear. 

5. CONCLUSIONS 

The GCC-PHAT algorithm proved robust in most 

common situations, and could easily be adapted to 

perform polarity correction as well as delay correction. 

The performance required determines the choice of 

block size. Increasing the block size improves stability 

at the cost of responsiveness and vice versa. The 

optimal ranges for performance indicate that the lower 

block sizes of fewer than 1024 are marginally less 

efficient. 

 

The best stationary performance is obtained when using 

the larger block sizes, though there is no major 

performance gain for sizes above 65536. For most 

general audio performance the ideal block sizes would 

be between 1024 and 8192. These give a good balance 

between compute time and accuracy. 

6. FURTHER RESEARCH 

One interesting area for further research area would be 

to determine the performance increase by staging the 

GCC-PHAT. This process would involve stepping the 

algorithm using a block size divided up into smaller 

blocks which can be stepped through. This could 

provide a benefit of the large block sizes but with the 

responsiveness of a smaller size. 

 

Another area is time variable GCC-PHAT so if it is 

known the delay is between 100 and 110 samples, take 

two blocks from different times in their relevant streams 

and align them using these two manually shifted blocks. 

This could provide greater delay estimation whilst 

preserving the lower processing time of the smaller 

windows. 
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