
Audio Engineering Society

Convention Paper 8852
Presented at the 134th Convention

2013 May 4–7 Rome, Italy

This Convention paper was selected based on a submitted abstract and 750-word precis that have been peer reviewed by at least

two qualified anonymous reviewers. The complete manuscript was not peer reviewed. This convention paper has been

reproduced from the author's advance manuscript without editing, corrections, or consideration by the Review Board. The AES

takes no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio

Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights reserved.

Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the Audio

Engineering Society.

Performance optimization of GCC-PHAT for
delay and polarity correction under real

world conditions

Nicholas Jillings
1
, Alice Clifford

1
, and Joshua D. Reiss

1

1
 Centre for Digital Music, Queen Mary, University of London, London, E1 4NS, UK

nicholas.jillings@eecs.qmul.ac.uk, alice.clifford@eecs.qmul.ac.uk, josh.reiss@eecs.qmul.ac.uk

ABSTRACT

When coherent audio streams are summed, delays can cause comb filtering and polarity inversion can result in

cancellation. The GCC-PHAT algorithm is a popular method for detecting (and hence correcting) the delay. This

paper explores the performance of the Generalized Cross Correlation with Phase Transform (GCC-PHAT) for delay

and polarity correction, under a variety of different conditions and parameter settings, and offers various

optimizations for those conditions. In particular, we investigated the performance for moving sources, background

noise, and reverberation. We consider the effect of varying the size of the Fourier Transform when performing

GCC-PHAT. In addition to accuracy, computational efficiency and latency were also used as metrics of

performance.

1. INTRODUCTION

Using multiple microphones to record one source has

become common practice in the digital age. Mixing of

these multiple signals however leads to comb filtering.

Comb filtering is caused by small delays between two

correlated signals which are summed. When this is

viewed in the frequency domain it has a comb-like

appearance, as shown in Figure 1. It is both constructive

and as it boosts and cuts specific frequencies.

Comb filtering is generally unwanted and exists

between any microphones at different distances from

the same source. The problem also occurs in parallel

systems such as when a guitar with a Direct Interface is

mixed with a microphone on the guitar amplifier.

Another situation is when processing a signal and

mixing the processed and unprocessed signals in real

time such as when using reverb. Both of these situations

result in a delay difference and therefore comb filtering

when the two signals are summed.

AES

Jillings et al Performance optimization of GCC-PHAT

AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 2 of 10

Figure 1 Comb Filtering at 100 samples and 44.1kHz

sample rate

When recording a signal s with two microphones, the

resultant signals can be expressed as:

 [] []

 [] [] (1)

Where x1 and x2 are the microphone signals, 1 and 2

are the delays and c1 and c2 represent amplitude

changes. This does not account for other artifacts such

as reverberation and noise. (1) can be rewritten to show

the summed signal x in terms of s:

 [] [] [] (2)

and x2 can be written in terms of x1,

 [] [] . (3)

In (3), c can represent the amplitude change between the

two signals due to both attenuation and polarity

inversion. The delay difference between the two signals

is , and can be detected through the use of the

Generalized Cross Correlation and Phase Transform

(GCC-PHAT) algorithm [1]. In [2], an alternative

technique was given that also corrected for polarity

inversion. However, this approach is known to be less

robust than GCC-PHAT.

Previous testing of the GCC-PHAT algorithm was

focused on the effects of applying a window to smooth

the incoming audio blocks before the GCC-PHAT

algorithm was applied, as well as exploring the

performance of band limited signals [3]. [4] showed

how the correct weighting on a signal could improve the

GCC performance, but these were only in reverberant

environments and the weightings did not provide highly

significant improvements over using the GCC-PHAT.

In [5], it was stated that delay estimation algorithms

tend to have reduced performance when used within

reverberant environments or where there are poor signal

to noise ratios. However it did not provide results

rigorous assessment of the performance under those

conditions. [6] used a variant of GCC-PHAT, based on

the Multichannel Cross-Correlation Coefficient.

However it was designed to locate the position, as did

[5], rather than report the delay between the two signals.

It appeared to perform well in a free-field environment,

but the behavior in a reverberant room is unknown.

 [7] also based their work on localizing sound and more

specifically the angle of incidence. Their paper showed

that noise had a significant effect on the accuracy of the

detection, however it did not report the delay values.

Their method adapted the GCC-PHAT algorithm as

well by using a low-pass filter before windowing the

signals.

In this paper, we aim to show the performance of the

GCC-PHAT by altering the size of the processing

blocks. The block size is the length of samples

processed by the GCC-PHAT. The algorithm was tested

for its ability to detect the delay in both real world

simulations and worst case scenarios to find its

limitations

This paper shows how the GCC-PHAT can be used for

polarity correction as well as delay correction. We show

that GCC-PHAT can be tailored to specific performance

requirements through simply choosing the correct block

size. Therefore the best performance can be achieved

whilst allowing for high accuracy with minimal

processing.

This paper also provides a detailed analysis of the

distortions and artifacts signals can have and their

effects on the accuracy of the GCC-PHAT.

2. GCC-PHAT & POLARITY

2.1. GCC-PHAT

The GCC-PHAT algorithm used in this paper is a chain

of signal processing and mathematics to estimate a

delay value between two coherent signals. Firstly the

signals are converted into the frequency domain using

the Fast Fourier Transform. Next they are combined

through a Generalized Cross Correlation. The result is

normalized using the Phase Transform and converted

Jillings et al Performance optimization of GCC-PHAT

AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 3 of 10

into a histogram using an Inverse Fast Fourier

Transform.

The GCC is defined as

][][][2

*

1 kXkXkG  (4)

in the frequency domain where Xn is xn in the frequency

domain and k is the frequency bin from 0 to N-1. (4) can

be converted into the time domain through an inverse

FFT so that

]}[{][1 kGFnG   (5)

where F
-1

 is the inverse FFT function. This can then be

used to find the delay in (3). [8] showed that the

performance increased by including a Phase Transform

(PHAT) before applying the IFFT on the GCC. The

PHAT on the GCC can be expressed as

][

][
][

kG

kG
kP




 (6)

It weights the GCC results so all frequencies are

normalized to one, therefore preserving the phase but

ignoring the effects of magnitude. The IFFT is applied

on this to provide the histogram. The histogram can be

read such that:

][maxarg nP
n
  (7)

which should equal from (3).

[8] showed that applying an N-Point Hann window on

the block of samples before applying an FFT increased

the accuracy further.

The complete GCC-PHAT algorithm can operate on

discrete blocks of a specified length, allowing the delay

to be calculated numerous times over the signals

duration.

2.2. Polarity Correction

Sources may be out of phase with each other due to

incorrect cabling or signal processing. The algorithm

does not consider this, and therefore it is entirely

possible for the signals to be aligned and cancel each

other out due to inverse phase.

The histogram produced by the GCC-PHAT can be used

to detect if the signals are in the correct polarity with

each other. This is achieved by reading the histogram

and determining if the maximum point, also used for the

delay amount, is either positive or negative. If it is

positive then both signals are in-phase. If it is negative

then one must be inverted before summing.

3. METHODS AND EXPECTED RESULTS

The tests are generally performed in the same fashion. A

stimulus is used and has a certain process applied to

alter it. The processed and unprocessed signals are then

sent through the algorithm and the results are used to

determine if it reported the delay correctly.

For the tests block sizes were used in powers of 2

ranging from 2
5
 to 2

17
.To provide consistency, 5 stimuli

tracks of duration 1 minute at 44.1kHz sample rate were

used. The tracks were a kick drum, piano, snare, violin

and a mix. The kick drum features a heavily transient

signal but only occupying the lower ends of the

frequency spectrum. The signal also had large audio

gaps between hits. The piano featured large amounts of

sustain, although overall was of high energy. The snare

was similar to the kick but had greater bandwidth and

some spill of the drum set between hits. The violin was

a high frequency instrument. Finally the mix provided a

large bandwidth, consistent amplitude signal. All the

stimuli were normalized between +1 and -1 of the

floating point range before any processing or testing.

3.1. Margin of Error

The effects of comb filtering are shown in Figure 1 with

a delay of 100 samples. This will cause an audible

difference in quality.

A value was deemed correct if it was within 2 samples

of the absolute correct value. This allows for small

errors where the effects of comb filtering only affect the

high frequencies as shown in Figure 2.

Jillings et al Performance optimization of GCC-PHAT

AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 4 of 10

Figure 2 Comb filtering at 2 samples difference

3.2. Methodology

Test 1 aimed at assessing the accuracy of the algorithm

with varying delay. It was performed by taking the

stimulus and delaying it a number of samples. This

allowed for a highly accurate signal. The delays used

ranged from 0 to 1,000 samples (0.02s delay at

44.1kHz) in steps of 10 and then up to 100,000 (2.27

delay at 44.1kHz) in steps of 1,000. This gave a large

range whilst not requiring an unnecessary amount of

processing. The smaller delays were used to test the

smaller block sizes. After 1,000 samples of delay the

tests would affect the larger block sizes only.

The second test was testing the accuracy with noise and

was performed by taking the input and applying noise as

a percentage of the floating point range. [8] also

performed tests on the effects of noise with GCC-

PHAT, but operated using the multiple peak algorithm

introduced in that paper. The signal amplitude was

lowered by the same amount to ensure that there was no

clipping of the output signal, as shown in

])[()1(][][nWGNaanxny  (8)

where a is the noise multiplier, n is the sample number

and WGN is the noise array. The noise used was white

Gaussian noise with amplitude range of -1 to +1 of

floating point values. This value a ranged from 0 (no

added noise) up to 0.99 (99% added noise) in steps of

0.01. In order to provide more detail, the steps up to 0.1

were in 0.001.

The third test combined both of the above tests into one

system to investigate the effects noise had on a delayed

signal. [8] stated that adding noise to a signal would

impact the maximum detectable distance. This test

aimed to show this relationship. The delay values were

set depending on the block size and were whole sample

numbers. Each delay was applied with 0 to 0.05

amplitude noise in steps of 0.001. This gave a matrix

output for easy interpretation of the results.

The moving source test interpolated the signal to

simulate a motion difference. This was achieved by

starting at a delay of 0 and moving through to a

determined end delay difference at a linear rate. The end

delay difference was a range of 10 (1.30mm/s) to 100

(12.96mm/s) in steps of 10, then up to 1,000 (0.13m/s)

in steps of 100 and finally up to 10,000 (1.3m/s) in steps

of 1,000.

[9] and [10] both performed tests looking into

reverberation and how reverberant spaces affect the

performance of GCC-PHAT. For this test the image

source toolbox by [11] was used to simulate a room

with a fixed source and a single receiver. The room was

a 3m by 3m by 2m virtual room with the source at 1.5m

x 0.1m x 1m and the receiver at 1.5m by ym by 1m. The

y is distance from source which varied from 0.1m to

2.7m in steps of 0.2m. The T60 reverberation time (the

time taken for the amplitude of the reverb to drop by

60dB) was varied from 0s to 2s in steps of 0.1s.

The algorithm was also run on a timer to determine the

CPU time taken for each particular segment of code. For

this the code was run on an Intel i7-720QM with the

clock limited to 930MHz.

3.3. Expected Results

The general expected result was that the larger the block

size, the higher the accuracy. The maximum delay for

each block size was expected to be half of the block

size. This is because the block size is processed by the

FFT, which returns N/2 samples of information.

It was also expected that each stimulus would produce

varying results as each stimulus was chosen for its

individual qualities. However the results would be

related to each other.

4. RESULTS

All of the results are with the error margins of +/- 2

samples from the absolutely correct value. When small

block sizes are mentioned this indicates sizes under

2048 and large block sizes above 2048.

Jillings et al Performance optimization of GCC-PHAT

AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 5 of 10

4.1. Delay

The delay test was mostly what was expected. Figure 3

shows each block size could detect up to half of its

block size, after which the accuracy became near to 0%.

The reason it was not 0% is because the results become

noise so some values would fall in the correct range.

Each block size also produced errors before the N/2

limit. This was most noticeable in the smaller block

sizes. The 1024 sample size was 100% accurate up until

the 500 sample delay for the kick and snare but errors

for the others occurred earlier (440 – Mix, 390 – Piano,

260 – Violin). All of these values are between 25% and

50% of the length of the N/2.

The 128 block size was only accurate up until the 40

delay sample for the kick and snare and around 20 for

the others. Therefore its errors start between

approximately 16% and 31%, far earlier than the 1024

value. The 32 sample value only gets the 0 delay right

and had over 50% of error values for all 5 stimuli at 10

samples of delay (~33%).

Figure 3 proves that the maximum detectable delay

value of the block size is N/2. However the larger the

block size, the more accurate it remains before this

point.

Figure 3 Accuracy of small block sizes

This is also true for the larger block sizes, although their

error counts were lower. For instance the 2048 window

gave only 7% of errors at 1000 sample delay (48.8%).

The other blocks exhibit similar patterns of error to this.

Therefore as the block size decreases, the proportion of

reliably detectable values for each size falls.

The polarity accuracy followed these curves although

they generated more errors. This is most likely because

the polarity is only two values and therefore cannot

have an error margin.

4.2. Noise

This test showed that the block size has an effect on the

resilience to noise as highlighted in Figure 4. As the

block size increases the number of incorrect results

decreases when averaged over the five stimuli. The

block size of 32 reaches 39.6% error at noise amplitude

0.1 whilst the 1024 only generated 22.4% error and the

131072 generates 0% error.

The 32 size block size achieves 30% of errors at a noise

amplitude of 0.034 (29.07 dBSNR) whilst the 256 block

size gets 30% of errors at a noise amplitude of 0.045

(26.54 dBSNR).The larger blocks show more resilience to

noise with 32768 getting 30% of error at 0.91 noise (-

20.01 dBSNR). All the signals fail at 0.94 of noise. These

values were the mean of all 5 stimuli.

Figure 4 Accuracy of small block sizes when tested

against varying noise levels

As shown in Figure 4, the smaller sized blocks start to

have errors at lower noise levels. It also shows that

when noise amplitude is under 0.2, the smaller block

sizes all tend to behave similarly. This is mostly due to

the high error rate introduced early on by the Kick drum

across all the small block sizes, illustrated in Figure 5.

Block sizes 256 and above have greater resilience at

lower noises. At very high levels of noise (above 0.8

noise amplitude) the relationship is roughly inverted

whereby the smaller block sizes have greater accuracy

than the large block sizes, although the number of errors

Jillings et al Performance optimization of GCC-PHAT

AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 6 of 10

is still high. This may be attributed to the fact that

incorrect delay estimates have a greater chance of being

within 2 samples of the actual delay for smaller block

sizes.

Resistance to noise is strongly related to the stimuli. The

kick drum for all the block sizes completely fails by

45% of noise (1.74 dBSNR) whilst the violin can be

accurate up to 83% (-13.77 dBSNR). Both of these values

are with the higher block sizes (65536 and 131072

respectively).

Figure 5 Individual Stimulus results of the 1024

averaging line in Figure 4

The kick was far worse at lower noise levels because of

the gaps between the hits. The block sizes below 32768

would sometimes consist purely of these gaps, meaning

the relative signal to noise ratio for that block was

lower. This was amplified by the energy of the Kick

being primarily in the lower end of the spectrum,

meaning the GCC-PHAT would have a handful of

points where there was useful information. The snare

was more resistant because it contained drum spill

between the hits, allowing for calculations to still be

accurate. The Mix performs best because it contains a

large amount of information across both time and

frequency domains.

One can conclude that the higher block sizes can

maintain high accuracy over a wide range of noise. The

results also indicate that the smaller block sizes perform

better under high noise, but this is not definitive.

4.3. Noise and Delay

As the noise affected the accuracy of the algorithm

along with the delay, the combination of the two should

provide an interesting relationship. The noise was tested

up to 0.05 and the delay was spread evenly from 0 to N,

N being the block size.

The large block size of 131072 and 65536 had near

100% accuracy for all stimuli at any delay and noise

value whilst 32768 never got above 29.4% of errors

(0.05 noise, 15744 delay). The error rates were all

below 30% for blocks larger than 8192.

Figure 6 Intensity plot of the effect of noise on accuracy

of delay estimation where 1 is 100% accuracy

Figure 6 shows the effect that noise has on the accuracy

of delayed signals. As the delay increases the resistance

to noise decreases. This applies for all except the largest

3 block sizes. As the block size drops, the algorithm

becomes less and less noise resistant, as proven earlier.

But also as the block size drops the accuracy at the same

delay fails.

Figure 7 Comparison of block sizes with a delay of 410

samples and increasing noise levels

Figure 7 show how the performance is affected by

different block sizes with the same delay. The 4096 and

8192 performed identically. The larger the block size

the more noise resistance for any delay value.

Jillings et al Performance optimization of GCC-PHAT

AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 7 of 10

This follows the trend from section 4.2 that larger block

sizes perform better with noise and can have a greater

range of detection as shown in section 4.1.

4.4. Moving Source

The moving source test provided some unexpected

results. The results initially point to an optimum level of

block size being 4096 for 44.1kHz sample rate, as

depicted in Figure 8. This graph shows a relationship

between two variables that apply throughout the results.

The first is the rule of N/2 being the maximum

detectable delay. This is the reason for the line for the

small block sizes. Their lines of error are on or near to

the N/2 limit.

The other rule is that there is an inherent latency in the

algorithms ability to update, which is equal to the block

size. This means that for larger block sizes it cannot

update fast enough to be accurate. This produces the top

half of the line. These two lines converge on the 4096 as

the best compromise between these two rules.

Figure 8 shows the area of detectability, where a certain

speed and size gives consistent results, but does not

show if a block size was able to track at a certain speed.

It was discovered that the smaller block sizes were able

to track the high speeds accurately as long as the delay

was within its usable range as indicated in the first test.

Taking the block size 32, it is clear that even for the

small delay of 10 samples difference after 1 minute the

algorithm already has high failure rates. But if the delay

remains within its usable space (roughly below 6

samples) then it can with high accuracy track the

moving source and update the delay correctly. This was

still true for the 10,000 samples per minute (1.3m/s)

audio stream. Figure 9 converts these speeds into human

readable speeds of 1.30mm/s (10 samples) and 1.3m/s

(10,000). The plot shows that the accuracy for both is

high whilst under the 6 sample usable space.

Therefore, the lower the block size the quicker the

response and the higher speed it can track. The lower

the block size however lowers the maximum difference

of distance from source to microphone. Thus the smaller

block sizes can be used so long as the difference in

distance does not exceed its usable range.

Figure 8 Percentage of Error for moving source signals

Figure 9 Block size of 32 samples with a moving source

of 10 samples per minute

4.5. Reverb

The reverberation test highlighted an interesting result.

The algorithm seems perfectly able to detect delay in

our environment provided the distance is under 1.1m

and the block size is above 4096.

Figure 10 shows that for a T60 time of 0.1 the block sizes

less than 1024 do not perform well at any distance. The

larger block sizes all gain high accuracy but fail at

distances above 2.3m. The 2048 block size however

performs well for all tested distances.

This theme of results continues throughout the various

T60 times. As shown in Figure 10, as the T60 time

increases the maximum usable distance decreases

Jillings et al Performance optimization of GCC-PHAT

AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 8 of 10

Figure 10 Accuracy with reverberation at

various T60 times

This relationship continues all the way through to the

higher T60 times of one second where the accuracy at all

block sizes drops significantly.

Figure 11 Accuracy with reverberation at

distance from source of 1 meter

Whilst figure 10 clearly shows that there is a peak

performance at 1024 to 2048 samples, figure 11

indicates that the accuracy drops off for higher T60

values. But the best accuracy achieved was with the

block sizes above 8192 for distances less than 1.1m.

This shows for our virtual environment that the smaller

block sizes are not able to determine the correct delay

value. However the larger block sizes are not entirely

accurate. The block sizes of 1024 and 2048 appear most

suited to detect the correct delay, although all block

sizes increase their accuracy with a decrease in distance.

4.6. Computation Time

An important aspect of any processing technique is the

time required to process the signals. The results in

sections 4.1 to 4.5 were performed using MATLAB.

The time tests in this section were performed using a

VST implementation of the GCC-PHAT algorithm

developed in order to test its ability of operation in a

real world and potentially live situation.

The GCC (equation 4) was faster by comparison to the

other tested processes in Figure 12. The time to process

1 minute of audio varied little with the block size.

However the intensive operation was the PHAT

calculation which was far higher than any other process

at over 1.1s of CPU time per minute of audio. The

PHAT process can be seen in equation 6.

Figure 12 Time per sample of major GCC-

PHAT processes in a VST plugin

On average a PHAT process would take approximately

4x10
-7

s of CPU time per sample. This starts out being

very small amounts of time for the lower block sizes but

on the 131072 size it becomes 0.057s to process each

block of information.

The FFT and IFFT processes (equation 5) were very

quick due to the PFFFT library and were nearly

identical to each other. Figure 11 shows the

unexpectedly low time for the FFT and IFFT processes

and the growing size of the PHAT for small block sizes.

The cause for this growth is unknown as it should be

expected to be linear or at worst increasing with block

size. The Window also has a slightly increased time for

the small block sizes, which might be explained due to

some initializing time for each block. It can also be an

error due to the resolution of the total time being to

0.001s.

The window function was surprisingly computationally

intensive given the implementation of the window.

Jillings et al Performance optimization of GCC-PHAT

AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 9 of 10

Once the window is generated in the initialization it

does not need to be recomputed for each block and was

implemented through simple multiplication:

 [] [] [] (9)

where y is the output, x is the input and W is the window

array. Each block sample is multiplied by a value

obtained from the window array.

The overall speed of the C++/VST implementation is

lower than expected. It points to increased accuracy at

higher block sizes but the reasons for this are not

entirely clear.

5. CONCLUSIONS

The GCC-PHAT algorithm proved robust in most

common situations, and could easily be adapted to

perform polarity correction as well as delay correction.

The performance required determines the choice of

block size. Increasing the block size improves stability

at the cost of responsiveness and vice versa. The

optimal ranges for performance indicate that the lower

block sizes of fewer than 1024 are marginally less

efficient.

The best stationary performance is obtained when using

the larger block sizes, though there is no major

performance gain for sizes above 65536. For most

general audio performance the ideal block sizes would

be between 1024 and 8192. These give a good balance

between compute time and accuracy.

6. FURTHER RESEARCH

One interesting area for further research area would be

to determine the performance increase by staging the

GCC-PHAT. This process would involve stepping the

algorithm using a block size divided up into smaller

blocks which can be stepped through. This could

provide a benefit of the large block sizes but with the

responsiveness of a smaller size.

Another area is time variable GCC-PHAT so if it is

known the delay is between 100 and 110 samples, take

two blocks from different times in their relevant streams

and align them using these two manually shifted blocks.

This could provide greater delay estimation whilst

preserving the lower processing time of the smaller

windows.

7. REFERENCES

[1] C. Knapp and G. Carter, “The generalized

correlation method for estimation of time delay,”

Acoustics, Speech and Signal Processing, IEEE

Transactions, vol. 24, no. 4, pp. 320-376, 1976.

[2] E. Perez Gonzalez and J. Reiss, “Determination and

correction of individual channel time offsets for

signals involved in an audio mixture,” in

Proceedings of the 125
th

 Audio Engineering Society

Convention, (San Francisco, USA), 2008

[3] A. Clifford and J. Reiss, “Reducing Comb Filtering

on different musical instruments using time delay

estimation,” Journal on the Art of Record

Production, 2011

[4] C. Maria Zannini et al, “Improved TDOA

Disambiguation Techniques for Sound Source

Localization in Reverberant Environments,” IEEE

ISCAS, 2010

[5] D. Salvati, S. Canazza and A. Rodà, “A Sound

Localization based interface for real-time control of

audio processing,” in Proceedings of the 14
th

International Conference on Digital Audio Effects,

(Paris, France), 2011

[6] D. Salvati et al, “A Real-time system for multiple

acoustic sources localization based on ISP

comparison,” in Proceedings of the 13
th

International Conference on Digital Audio Effects,

(Graz, Austria), 2010.

[7] M. Perez-Lorenzo, R. Viciana-Abad, P. Reche-

Lopez, F. Rivas and J. Escolano, “Evaluation of

generalized cross-correlation methods for direction

of arrival estimation using two microphones in real

environments,” Applied Acoustics, vol. 73, pp. 698-

712, 2012

[8] A. Clifford and J. Reiss, “Calculating time delays

of multiple active sources in live sound,” 129
th

Audio Engineering Society Convention, (San

Francisco, USA), 2010.

[9] M. S. Brandstein and H. F. Silverman, “A robust

method for speech signal time-delay estimation in

reverberant rooms,” in IEEE International

Conference on Acoustics, Speech and Signal

Processing, 1997

Jillings et al Performance optimization of GCC-PHAT

AES 134th Convention, Rome, Italy, 2013 May 4–7

Page 10 of 10

[10] B. Champagne, S. Bérdard and A. Stéphenne,

“Performance of time-delay estimation in the

presence of room reverberation,” IEEE

Transactions on Speech and Audio Processing, vol.

4, pp. 148-152, 1996.

[11] E. Lehmann and A. Johansson, “Prediction of

energy decay in room impulse responses simulated

with an image-source model,” The Journal of the

Acoustical Society of America, vol. 124, pp. 269-

277

