AUDIO Audio Engineering Society

‘% Convention Paper 8852

® Presented at the 134th Convention
2013 May 4-7 Rome, ltaly

This Convention paper was selected based on a submitted abstract and 750-word precis that have been peer reviewed by at least
two qualified anonymous reviewers. The complete manuscript was not peer reviewed. This convention paper has been
reproduced from the author's advance manuscript without editing, corrections, or consideration by the Review Board. The AES
takes no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio
Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA, also see www.aes.org. All rights reserved.
Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the Audio
Engineering Society.

Performance optimization of GCC-PHAT for
delay and polarity correction under real
world conditions

Nicholas Jillings®, Alice Clifford*, and Joshua D. Reiss"

! Centre for Digital Music, Queen Mary, University of London, London, E1 4NS, UK
nicholas.jillings@eecs.qmul.ac.uk, alice.clifford@eecs.gmul.ac.uk, josh.reiss@eecs.gmul.ac.uk

ABSTRACT

When coherent audio streams are summed, delays can cause comb filtering and polarity inversion can result in
cancellation. The GCC-PHAT algorithm is a popular method for detecting (and hence correcting) the delay. This
paper explores the performance of the Generalized Cross Correlation with Phase Transform (GCC-PHAT) for delay
and polarity correction, under a variety of different conditions and parameter settings, and offers various
optimizations for those conditions. In particular, we investigated the performance for moving sources, background
noise, and reverberation. We consider the effect of varying the size of the Fourier Transform when performing
GCC-PHAT. In addition to accuracy, computational efficiency and latency were also used as metrics of
performance.

Comb filtering is generally unwanted and exists
between any microphones at different distances from
the same source. The problem also occurs in parallel
systems such as when a guitar with a Direct Interface is
mixed with a microphone on the guitar amplifier.
Another situation is when processing a signal and
mixing the processed and unprocessed signals in real
time such as when using reverb. Both of these situations
result in a delay difference and therefore comb filtering
when the two signals are summed.

1. INTRODUCTION

Using multiple microphones to record one source has
become common practice in the digital age. Mixing of
these multiple signals however leads to comb filtering.
Comb filtering is caused by small delays between two
correlated signals which are summed. When this is
viewed in the frequency domain it has a comb-like
appearance, as shown in Figure 1. It is both constructive
and as it boosts and cuts specific frequencies.

Jillings et al

Performance optimization of GCC-PHAT

Effects of comb filtering at 100 samples

20 T T r T
= : : : .
=
[+
e
=
=
m
=
50 H H H H
0 02 04 06 08 1

Mormalized Frequency (=7 rad/sample}

Figure 1 Comb Filtering at 100 samples and 44.1kHz
sample rate

When recording a signal s with two microphones, the
resultant signals can be expressed as:

x1[n] = ¢;s[n —14]
x2[n] = c;5[n — 15] 1)

Where x; and X, are the microphone signals, z and =
are the delays and c¢; and c, represent amplitude
changes. This does not account for other artifacts such
as reverberation and noise. (1) can be rewritten to show
the summed signal x in terms of s:

x[n] = ¢;s[n — 11] + cy8[n — 15] (2)
and x, can be written in terms of x;.
x;[n] = cxy[n —1]. 3)

In (3), ¢ can represent the amplitude change between the
two signals due to both attenuation and polarity
inversion. The delay difference between the two signals
is 7, and can be detected through the use of the
Generalized Cross Correlation and Phase Transform
(GCC-PHAT) algorithm [1]. In [2], an alternative
technique was given that also corrected for polarity
inversion. However, this approach is known to be less
robust than GCC-PHAT.

Previous testing of the GCC-PHAT algorithm was
focused on the effects of applying a window to smooth
the incoming audio blocks before the GCC-PHAT
algorithm was applied, as well as exploring the
performance of band limited signals [3]. [4] showed
how the correct weighting on a signal could improve the
GCC performance, but these were only in reverberant
environments and the weightings did not provide highly
significant improvements over using the GCC-PHAT.

In [5], it was stated that delay estimation algorithms
tend to have reduced performance when used within
reverberant environments or where there are poor signal
to noise ratios. However it did not provide results
rigorous assessment of the performance under those
conditions. [6] used a variant of GCC-PHAT, based on
the Multichannel Cross-Correlation Coefficient.
However it was designed to locate the position, as did
[5], rather than report the delay between the two signals.
It appeared to perform well in a free-field environment,
but the behavior in a reverberant room is unknown.

[7] also based their work on localizing sound and more

specifically the angle of incidence. Their paper showed
that noise had a significant effect on the accuracy of the
detection, however it did not report the delay values.
Their method adapted the GCC-PHAT algorithm as
well by using a low-pass filter before windowing the
signals.

In this paper, we aim to show the performance of the
GCC-PHAT by altering the size of the processing
blocks. The block size is the length of samples
processed by the GCC-PHAT. The algorithm was tested
for its ability to detect the delay in both real world
simulations and worst case scenarios to find its
limitations

This paper shows how the GCC-PHAT can be used for
polarity correction as well as delay correction. We show
that GCC-PHAT can be tailored to specific performance
requirements through simply choosing the correct block
size. Therefore the best performance can be achieved
whilst allowing for high accuracy with minimal
processing.

This paper also provides a detailed analysis of the
distortions and artifacts signals can have and their
effects on the accuracy of the GCC-PHAT.

2. GCC-PHAT & POLARITY
2.1. GCC-PHAT

The GCC-PHAT algorithm used in this paper is a chain
of signal processing and mathematics to estimate a
delay value between two coherent signals. Firstly the
signals are converted into the frequency domain using
the Fast Fourier Transform. Next they are combined
through a Generalized Cross Correlation. The result is
normalized using the Phase Transform and converted

AES 134th Convention, Rome, Italy, 2013 May 4-7
Page 2 of 10

Jillings et al

Performance optimization of GCC-PHAT

into a histogram using an Inverse Fast Fourier

Transform.

The GCC is defined as
YG[K] = X, [K]- X, [K] 4)

in the frequency domain where X, is x, in the frequency
domain and k is the frequency bin from 0 to N-1. (4) can
be converted into the time domain through an inverse
FFT so that

yGn] = F{¥G[K]} (5)

where F* is the inverse FFT function. This can then be
used to find the delay t in (3). [8] showed that the
performance increased by including a Phase Transform
(PHAT) before applying the IFFT on the GCC. The
PHAT on the GCC can be expressed as

_ YGIK]
PP[k] = WGIK] 6)

It weights the GCC results so all frequencies are
normalized to one, therefore preserving the phase but
ignoring the effects of magnitude. The IFFT is applied
on this to provide the histogram. The histogram can be
read such that:

7 =arg max yP[n])

which should equal = from (3).

[8] showed that applying an N-Point Hann window on
the block of samples before applying an FFT increased
the accuracy further.

The complete GCC-PHAT algorithm can operate on
discrete blocks of a specified length, allowing the delay
to be calculated numerous times over the signals
duration.

2.2. Polarity Correction

Sources may be out of phase with each other due to
incorrect cabling or signal processing. The algorithm
does not consider this, and therefore it is entirely
possible for the signals to be aligned and cancel each
other out due to inverse phase.

The histogram produced by the GCC-PHAT can be used
to detect if the signals are in the correct polarity with
each other. This is achieved by reading the histogram
and determining if the maximum point, also used for the
delay amount, is either positive or negative. If it is
positive then both signals are in-phase. If it is negative
then one must be inverted before summing.

3. METHODS AND EXPECTED RESULTS

The tests are generally performed in the same fashion. A
stimulus is used and has a certain process applied to
alter it. The processed and unprocessed signals are then
sent through the algorithm and the results are used to
determine if it reported the delay correctly.

For the tests block sizes were used in powers of 2
ranging from 2° to 2*".To provide consistency, 5 stimuli
tracks of duration 1 minute at 44.1kHz sample rate were
used. The tracks were a kick drum, piano, snare, violin
and a mix. The kick drum features a heavily transient
signal but only occupying the lower ends of the
frequency spectrum. The signal also had large audio
gaps between hits. The piano featured large amounts of
sustain, although overall was of high energy. The snare
was similar to the kick but had greater bandwidth and
some spill of the drum set between hits. The violin was
a high frequency instrument. Finally the mix provided a
large bandwidth, consistent amplitude signal. All the
stimuli were normalized between +1 and -1 of the
floating point range before any processing or testing.

3.1. Margin of Error

The effects of comb filtering are shown in Figure 1 with
a delay of 100 samples. This will cause an audible
difference in quality.

A value was deemed correct if it was within 2 samples
of the absolute correct value. This allows for small
errors where the effects of comb filtering only affect the
high frequencies as shown in Figure 2.

AES 134th Convention, Rome, Italy, 2013 May 4-7
Page 3 of 10

Jillings et al

Performance optimization of GCC-PHAT

Effects of comb filtering at 2 samples

MWagnitude (dB)

0 0.2 0.4 0.6 0.8 1
Mormalized Frequency (xz rad/sample)

Figure 2 Comb filtering at 2 samples difference

3.2. Methodology

Test 1 aimed at assessing the accuracy of the algorithm
with varying delay. It was performed by taking the
stimulus and delaying it a number of samples. This
allowed for a highly accurate signal. The delays used
ranged from 0 to 1,000 samples (0.02s delay at
44.1kHz) in steps of 10 and then up to 100,000 (2.27
delay at 44.1kHz) in steps of 1,000. This gave a large
range whilst not requiring an unnecessary amount of
processing. The smaller delays were used to test the
smaller block sizes. After 1,000 samples of delay the
tests would affect the larger block sizes only.

The second test was testing the accuracy with noise and
was performed by taking the input and applying noise as
a percentage of the floating point range. [8] also
performed tests on the effects of noise with GCC-
PHAT, but operated using the multiple peak algorithm
introduced in that paper. The signal amplitude was
lowered by the same amount to ensure that there was no
clipping of the output signal, as shown in

yln]=x[n]--a)+(@-WGN[n]) ()

where a is the noise multiplier, n is the sample number
and WGN is the noise array. The noise used was white
Gaussian noise with amplitude range of -1 to +1 of
floating point values. This value a ranged from 0 (no
added noise) up to 0.99 (99% added noise) in steps of
0.01. In order to provide more detail, the steps up to 0.1
were in 0.001.

The third test combined both of the above tests into one
system to investigate the effects noise had on a delayed
signal. [8] stated that adding noise to a signal would
impact the maximum detectable distance. This test
aimed to show this relationship. The delay values were
set depending on the block size and were whole sample

numbers. Each delay was applied with 0 to 0.05
amplitude noise in steps of 0.001. This gave a matrix
output for easy interpretation of the results.

The moving source test interpolated the signal to
simulate a motion difference. This was achieved by
starting at a delay of 0 and moving through to a
determined end delay difference at a linear rate. The end
delay difference was a range of 10 (1.30mm/s) to 100
(12.96mm/s) in steps of 10, then up to 1,000 (0.13m/s)
in steps of 100 and finally up to 10,000 (1.3m/s) in steps
of 1,000.

[9] and [10] both performed tests looking into
reverberation and how reverberant spaces affect the
performance of GCC-PHAT. For this test the image
source toolbox by [11] was used to simulate a room
with a fixed source and a single receiver. The room was
a 3m by 3m by 2m virtual room with the source at 1.5m
x 0.1m x 1m and the receiver at 1.5m by ym by 1m. The
y is distance from source which varied from 0.1m to
2.7m in steps of 0.2m. The Tg, reverberation time (the
time taken for the amplitude of the reverb to drop by
60dB) was varied from 0s to 2s in steps of 0.1s.

The algorithm was also run on a timer to determine the
CPU time taken for each particular segment of code. For
this the code was run on an Intel i7-720QM with the
clock limited to 930MHz.

3.3. Expected Results

The general expected result was that the larger the block
size, the higher the accuracy. The maximum delay for
each block size was expected to be half of the block
size. This is because the block size is processed by the
FFT, which returns N/2 samples of information.

It was also expected that each stimulus would produce
varying results as each stimulus was chosen for its
individual qualities. However the results would be
related to each other.

4, RESULTS

All of the results are with the error margins of +/- 2
samples from the absolutely correct value. When small
block sizes are mentioned this indicates sizes under
2048 and large block sizes above 2048.

AES 134th Convention, Rome, Italy, 2013 May 4-7
Page 4 of 10

Jillings et al

Performance optimization of GCC-PHAT

4.1. Delay

The delay test was mostly what was expected. Figure 3
shows each block size could detect up to half of its
block size, after which the accuracy became near to 0%.
The reason it was not 0% is because the results become
noise so some values would fall in the correct range.

Each block size also produced errors before the N/2
limit. This was most noticeable in the smaller block
sizes. The 1024 sample size was 100% accurate up until
the 500 sample delay for the kick and snare but errors
for the others occurred earlier (440 — Mix, 390 — Piano,
260 — Violin). All of these values are between 25% and
50% of the length of the N/2.

The 128 block size was only accurate up until the 40
delay sample for the kick and snare and around 20 for
the others. Therefore its errors start between
approximately 16% and 31%, far earlier than the 1024
value. The 32 sample value only gets the 0O delay right
and had over 50% of error values for all 5 stimuli at 10
samples of delay (~33%).

Figure 3 proves that the maximum detectable delay
value of the block size is N/2. However the larger the
block size, the more accurate it remains before this
point.

Delayresponse of sinall block sizes

1002
RS —
: : :) : — b4
aoes | SRR R \1 128
S N 'l"l; © | == us6
11 L ..;.I'.I.‘ L o —— oAtz
B : : : : E : : 1024
2 : . ll : . : :
2 40l UUURUETON. O B N T AT e T
: ; il : : : :
. : . 1] . : . -
1) N P L o T T Mo P L e ved
oo oo
: : : '{ : : : :
1 1 1 1 m ok owm b ow w ow w ow
I]%IZI 01 02 03 04 05 06 0¥ 0 na 1

Ratio af Block Sizeto delay

Figure 3 Accuracy of small block sizes

This is also true for the larger block sizes, although their
error counts were lower. For instance the 2048 window
gave only 7% of errors at 1000 sample delay (48.8%).
The other blocks exhibit similar patterns of error to this.

Therefore as the block size decreases, the proportion of
reliably detectable values for each size falls.

The polarity accuracy followed these curves although
they generated more errors. This is most likely because
the polarity is only two values and therefore cannot
have an error margin.

4.2.

This test showed that the block size has an effect on the
resilience to noise as highlighted in Figure 4. As the
block size increases the number of incorrect results
decreases when averaged over the five stimuli. The
block size of 32 reaches 39.6% error at noise amplitude
0.1 whilst the 1024 only generated 22.4% error and the
131072 generates 0% error.

Noise

The 32 size block size achieves 30% of errors at a noise
amplitude of 0.034 (29.07 dBsyg) Whilst the 256 block
size gets 30% of errors at a noise amplitude of 0.045
(26.54 dBsyR).The larger blocks show more resilience to
noise with 32768 getting 30% of error at 0.91 noise (-
20.01 dBsngr). All the signals fail at 0.94 of noise. These
values were the mean of all 5 stimuli.

Accuracy of small block size with vardng noise
100%; T T . T

128

T ==
803 3 f : § —

BO% |

0%

Percan tage of Accuracy

20%

0% 0.2 04 06 0.8 1.0

Muoize Applied

Figure 4 Accuracy of small block sizes when tested
against varying noise levels

As shown in Figure 4, the smaller sized blocks start to
have errors at lower noise levels. It also shows that
when noise amplitude is under 0.2, the smaller block
sizes all tend to behave similarly. This is mostly due to
the high error rate introduced early on by the Kick drum
across all the small block sizes, illustrated in Figure 5.
Block sizes 256 and above have greater resilience at
lower noises. At very high levels of noise (above 0.8
noise amplitude) the relationship is roughly inverted
whereby the smaller block sizes have greater accuracy
than the large block sizes, although the number of errors

AES 134th Convention, Rome, Italy, 2013 May 4-7
Page 5 of 10

Jillings et al

Performance optimization of GCC-PHAT

is still high. This may be attributed to the fact that
incorrect delay estimates have a greater chance of being
within 2 samples of the actual delay for smaller block
sizes.

Resistance to noise is strongly related to the stimuli. The
kick drum for all the block sizes completely fails by
45% of noise (1.74 dBgyr) Whilst the violin can be
accurate up to 83% (-13.77 dBgyr). Both of these values
are with the higher block sizes (65536 and 131072
respectively).

Acccuracy of Stimuliat 1024 block size

N T
g Dalh .
2 : : — Yiglin
% oElH....... ;..'\, 2L XRRERECERREEES [TRRRRRREE Kick
2 : : Piaria
E’ [T 3 TP T L L W . T — — Mz
H LY | — — Sriare
2 :
Foaozl v

0 B0
Moize &mplitude

Figure 5 Individual Stimulus results of the 1024
averaging line in Figure 4

The kick was far worse at lower noise levels because of
the gaps between the hits. The block sizes below 32768
would sometimes consist purely of these gaps, meaning
the relative signal to noise ratio for that block was
lower. This was amplified by the energy of the Kick
being primarily in the lower end of the spectrum,
meaning the GCC-PHAT would have a handful of
points where there was useful information. The snare
was more resistant because it contained drum spill
between the hits, allowing for calculations to still be
accurate. The Mix performs best because it contains a
large amount of information across both time and
frequency domains.

One can conclude that the higher block sizes can
maintain high accuracy over a wide range of noise. The
results also indicate that the smaller block sizes perform
better under high noise, but this is not definitive.

4.3. Noise and Delay

As the noise affected the accuracy of the algorithm
along with the delay, the combination of the two should
provide an interesting relationship. The noise was tested
up to 0.05 and the delay was spread evenly from O to N,
N being the block size.

The large block size of 131072 and 65536 had near
100% accuracy for all stimuli at any delay and noise
value whilst 32768 never got above 29.4% of errors
(0.05 noise, 15744 delay). The error rates were all
below 30% for blocks larger than 8192.

Effects of Moise on 4096 block size

Moizg A plitade

0.0

1000 1500 2000
Delay [sarmples)

Figure 6 Intensity plot of the effect of noise on accuracy
of delay estimation where 1 is 100% accuracy

Figure 6 shows the effect that noise has on the accuracy
of delayed signals. As the delay increases the resistance
to noise decreases. This applies for all except the largest
3 block sizes. As the block size drops, the algorithm
becomes less and less noise resistant, as proven earlier.
But also as the block size drops the accuracy at the same
delay fails.

Comparizon on block sizes ab 410 delay

Paneen tages Mool racy
=2 s 2 =2 =2 2 9
LaL) -+ o f=r] ==l o0 o

; i i i
oot 0.02 0.03 0.04 0.05
Muoize Amplitude

=
%3

|—mz4 — 2048 4095 —— a192|

Figure 7 Comparison of block sizes with a delay of 410
samples and increasing noise levels

Figure 7 show how the performance is affected by
different block sizes with the same delay. The 4096 and
8192 performed identically. The larger the block size
the more noise resistance for any delay value.

AES 134th Convention, Rome, Italy, 2013 May 4—7
Page 6 of 10

Jillings et al

Performance optimization of GCC-PHAT

This follows the trend from section 4.2 that larger block
sizes perform better with noise and can have a greater
range of detection as shown in section 4.1.

4.4. Moving Source

The moving source test provided some unexpected
results. The results initially point to an optimum level of
block size being 4096 for 44.1kHz sample rate, as
depicted in Figure 8. This graph shows a relationship
between two variables that apply throughout the results.
The first is the rule of N/2 being the maximum
detectable delay. This is the reason for the line for the
small block sizes. Their lines of error are on or near to
the N/2 limit.

The other rule is that there is an inherent latency in the
algorithms ability to update, which is equal to the block
size. This means that for larger block sizes it cannot
update fast enough to be accurate. This produces the top
half of the line. These two lines converge on the 4096 as
the best compromise between these two rules.

Figure 8 shows the area of detectability, where a certain
speed and size gives consistent results, but does not
show if a block size was able to track at a certain speed.
It was discovered that the smaller block sizes were able
to track the high speeds accurately as long as the delay
was within its usable range as indicated in the first test.

Taking the block size 32, it is clear that even for the
small delay of 10 samples difference after 1 minute the
algorithm already has high failure rates. But if the delay
remains within its usable space (roughly below 6
samples) then it can with high accuracy track the
moving source and update the delay correctly. This was
still true for the 10,000 samples per minute (1.3m/s)
audio stream. Figure 9 converts these speeds into human
readable speeds of 1.30mm/s (10 samples) and 1.3m/s
(10,000). The plot shows that the accuracy for both is
high whilst under the 6 sample usable space.

Therefore, the lower the block size the quicker the
response and the higher speed it can track. The lower
the block size however lowers the maximum difference
of distance from source to microphone. Thus the smaller
block sizes can be used so long as the difference in
distance does not exceed its usable range.

Accuracy of speeds with different block sizes for 1 minute
131072 T T

BE53 e Nt s]
7] R NRS S KR o : 0% |
16384
B192
096 |- ; _
048 b -
1024 f-o :
512
Fc] SRS NS
S| M S L
T - _ :
ol B : N

Block Size

Speed (m/s)

Figure 8 Percentage of Error for moving source signals

Comparison of block size 32 with motion 1.3mm/s and 1.3m/ds
10 . . ; . ; ; . : :
———1.30mmis | : : : : :

Detected Delay (samples)

Delay (samples)

Figure 9 Block size of 32 samples with a moving source
of 10 samples per minute

45. Reverb

The reverberation test highlighted an interesting result.
The algorithm seems perfectly able to detect delay in
our environment provided the distance is under 1.1m
and the block size is above 4096.

Figure 10 shows that for a Tgq time of 0.1 the block sizes
less than 1024 do not perform well at any distance. The
larger block sizes all gain high accuracy but fail at
distances above 2.3m. The 2048 block size however
performs well for all tested distances.

This theme of results continues throughout the various
Teo times. As shown in Figure 10, as the Tg time
increases the maximum usable distance decreases

AES 134th Convention, Rome, Italy, 2013 May 4—7
Page 7 of 10

Jillings et al

Performance optimization of GCC-PHAT

Accuracy of 80% with different TBO times
131072 ™ T T

:
BA535 I —o01
32768 - ——0z2
16384 ; ——-03
152 ~— : ——-04
4096 ©
o045 -
1024)#:_'___f] : 1
512 e :

256 = :

ey

128 P

B4

P | i i ! i i
i} 05 1 15 2 25 3
Distance from Source

Block Size

Figure 10 Accuracy with reverberation at

various Tgo times

This relationship continues all the way through to the
higher Tg, times of one second where the accuracy at all
block sizes drops significantly.

Distance of 1m from source

Block Size

nz2

Figure 11 Accuracy with reverberation at
distance from source of 1 meter

Whilst figure 10 clearly shows that there is a peak
performance at 1024 to 2048 samples, figure 11
indicates that the accuracy drops off for higher T
values. But the best accuracy achieved was with the
block sizes above 8192 for distances less than 1.1m.

This shows for our virtual environment that the smaller
block sizes are not able to determine the correct delay
value. However the larger block sizes are not entirely
accurate. The block sizes of 1024 and 2048 appear most
suited to detect the correct delay, although all block
sizes increase their accuracy with a decrease in distance.

4.6. Computation Time

An important aspect of any processing technique is the
time required to process the signals. The results in

sections 4.1 to 4.5 were performed using MATLAB.
The time tests in this section were performed using a
VST implementation of the GCC-PHAT algorithm
developed in order to test its ability of operation in a
real world and potentially live situation.

The GCC (equation 4) was faster by comparison to the
other tested processes in Figure 12. The time to process
1 minute of audio varied little with the block size.
However the intensive operation was the PHAT
calculation which was far higher than any other process
at over 1.1s of CPU time per minute of audio. The
PHAT process can be seen in equation 6.

win Time per sample in VST

6 T T T T T T

sl]
z 1
2
1
£
& 3l b i
o
z
5
£
= IO VOO PO NUUNNUUON OSSO0 SOPOOOOOS SOV SNUONNS SOUUON OO SO SN i

,L ; : : i

[

0 1 L I = bl T Il 1 L L 1

32 = 128 296 812 1024 2043 4098 8192 16384 327BE B8535 13107

Block Size
‘ Window FFT GCC PHAT —==IFFT
Figure 12 Time per sample of major GCC-

PHAT processes in a VST plugin

On average a PHAT process would take approximately
4x10's of CPU time per sample. This starts out being
very small amounts of time for the lower block sizes but
on the 131072 size it becomes 0.057s to process each
block of information.

The FFT and IFFT processes (equation 5) were very
quick due to the PFFFT library and were nearly
identical to each other. Figure 11 shows the
unexpectedly low time for the FFT and IFFT processes
and the growing size of the PHAT for small block sizes.
The cause for this growth is unknown as it should be
expected to be linear or at worst increasing with block
size. The Window also has a slightly increased time for
the small block sizes, which might be explained due to
some initializing time for each block. It can also be an
error due to the resolution of the total time being to
0.001s.

The window function was surprisingly computationally
intensive given the implementation of the window.

AES 134th Convention, Rome, Italy, 2013 May 4—7
Page 8 of 10

Jillings et al

Performance optimization of GCC-PHAT

Once the window is generated in the initialization it
does not need to be recomputed for each block and was
implemented through simple multiplication:
yln] = x[n] - W[n] 9)

where y is the output, x is the input and W is the window
array. Each block sample is multiplied by a value
obtained from the window array.

The overall speed of the C++/VST implementation is
lower than expected. It points to increased accuracy at
higher block sizes but the reasons for this are not
entirely clear.

5. CONCLUSIONS

The GCC-PHAT algorithm proved robust in most
common situations, and could easily be adapted to
perform polarity correction as well as delay correction.
The performance required determines the choice of
block size. Increasing the block size improves stability
at the cost of responsiveness and vice versa. The
optimal ranges for performance indicate that the lower
block sizes of fewer than 1024 are marginally less
efficient.

The best stationary performance is obtained when using
the larger block sizes, though there is no major
performance gain for sizes above 65536. For most
general audio performance the ideal block sizes would
be between 1024 and 8192. These give a good balance
between compute time and accuracy.

6. FURTHER RESEARCH

One interesting area for further research area would be
to determine the performance increase by staging the
GCC-PHAT. This process would involve stepping the
algorithm using a block size divided up into smaller
blocks which can be stepped through. This could
provide a benefit of the large block sizes but with the
responsiveness of a smaller size.

Another area is time variable GCC-PHAT so if it is
known the delay is between 100 and 110 samples, take
two blocks from different times in their relevant streams
and align them using these two manually shifted blocks.
This could provide greater delay estimation whilst
preserving the lower processing time of the smaller
windows.

7.

[1]

[2]

3]

[4]

[5]

[6]

[7]

8]

[9]

REFERENCES

C. Knapp and G. Carter, “The generalized
correlation method for estimation of time delay,”
Acoustics, Speech and Signal Processing, IEEE
Transactions, vol. 24, no. 4, pp. 320-376, 1976.

E. Perez Gonzalez and J. Reiss, “Determination and
correction of individual channel time offsets for
signals involved in an audio mixture,” in
Proceedings of the 125" Audio Engineering Society
Convention, (San Francisco, USA), 2008

A. Clifford and J. Reiss, “Reducing Comb Filtering
on different musical instruments using time delay
estimation,” Journal on the Art of Record
Production, 2011

C. Maria Zannini et al, “Improved TDOA
Disambiguation Techniques for Sound Source
Localization in Reverberant Environments,” IEEE
ISCAS, 2010

D. Salvati, S. Canazza and A. Roda, “A Sound
Localization based interface for real-time control of
audio processing,” in Proceedings of the 14"
International Conference on Digital Audio Effects,
(Paris, France), 2011

D. Salvati et al, “A Real-time system for multiple
acoustic sources localization based on ISP
comparison,” in Proceedings of the 13"
International Conference on Digital Audio Effects,
(Graz, Austria), 2010.

M. Perez-Lorenzo, R. Viciana-Abad, P. Reche-
Lopez, F. Rivas and J. Escolano, “Evaluation of
generalized cross-correlation methods for direction
of arrival estimation using two microphones in real
environments,” Applied Acoustics, vol. 73, pp. 698-
712, 2012

A. Clifford and J. Reiss, “Calculating time delays
of multiple active sources in live sound,” 129"
Audio Engineering Society Convention, (San
Francisco, USA), 2010.

M. S. Brandstein and H. F. Silverman, “A robust
method for speech signal time-delay estimation in
reverberant rooms,” in |EEE International
Conference on Acoustics, Speech and Signal
Processing, 1997

AES 134th Convention, Rome, Italy, 2013 May 4-7
Page 9 of 10

Jillings et al

Performance optimization of GCC-PHAT

[10]B. Champagne, S. Bérdard and A. Stéphenne,
“Performance of time-delay estimation in the
presence of room reverberation,” |EEE
Transactions on Speech and Audio Processing, vol.

4, pp. 148-152, 1996.

[11]1E. Lehmann and A. Johansson, “Prediction of
energy decay in room impulse responses simulated
with an image-source model,” The Journal of the
Acoustical Society of America, vol. 124, pp. 269-

277

AES 134th Convention, Rome, Italy, 2013 May 4-7

Page 10 of 10

